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H I G H L I G H T S  

• Energy risks cause direct spillover to the global ESG investment when the economy runs smoothly. 
• Different forms of spillovers from the EPU to the global ESG investment during downtowns. 
• Asymmetric spillovers from the natural gas market and the US EPU occur in irregular events. 
• China’s EPU and US MPU cause asymmetric spillovers in different ways under extreme events. 
• The crude oil market can directly transmit a common risk to global ESG investment.  
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A B S T R A C T   

This study investigates the asymmetric spillover network connectedness of policy uncertainty, the fossil fuel 
energy market, and global ESG investment by using a time-frequency domain analysis. The study employs a time- 
varying filter for the empirical mode decomposition method and Pearson correlation coefficient to distinguish 
signals’ dynamic frequency and amplitude. We combine a two-state fractionally integrated asymmetric power 
autoregressive conditional heteroskedasticity with asymmetric time-varying parameter vector autoregression 
and vector autoregression-common factor variance decomposition. The Vector Auto Regression-common factor 
model is also considered. The results demonstrate that when the economy runs smoothly, risks originating from 
the natural gas market have indirect spillover effects on emerging economies’ ESG investment. When normal 
economic fluctuations occur, risks arising from fossil fuel energy markets and US climate policy uncertainty exert 
separate direct and indirect spillovers to the global ESG investment. Second, when the economy declines, 
different types of spillovers occur from US economic policy uncertainty (EPU) to global ESG investment. During 
the recession, greater risks in the crude oil market and the uncertainty in China’s economic policy caused 
separate indirect spillovers to advanced economies’ ESG investment. Third, with the continuous occurrence of 
irregular events, asymmetric spillovers can originate from the natural gas market and US EPU. When extreme 
events occur, positive risks from China’s economic policy can be indirectly transmitted to emerging economies’ 
ESG investment, while negative risks from the US monetary policy can be directly transferred to global ESG 
investment. Finally, the crude oil market can directly transmit an idiosyncratic risk to global ESG investment.   

1. Introduction 

The global financial crisis (GFC) in 2008 and the European debt crisis 
in 2010 caused turmoil in the world economy, along with the existing 
international economic order and the globalization process [1,2]. As 

the integration of financial markets rapidly progressed, regulators and 
supranational agencies became increasingly worried about systemic risk 
[3]. Governments worldwide introduced a series of policies to stimulate 
the economy, and developed economies adopted quantitative easing 
monetary policies and a weak exchange rate policy. Emerging 
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economies did the opposite, smoothing interest rates afterward [4,5]. 
In the postcrisis era, black swan events hit in succession, and the overall 
world economy remains vulnerable to even more predictable disrup-
tions [6–8], and the system itself continued to be fragile and vulnerable 
to large macroeconomic shocks [9]. The World Bank downgraded its 
global economic growth forecasts for 2024, reflecting heightened un-
certainties concerning advanced economies. To reduce inflation pres-
sure, a sustained Fed rate rise in the US has been affecting global interest 
rates and the direction of international capital flow, which affected 
banks’ policies resulting in a severe credit and liquidity crisis in financial 
markets. This type of risk, wherein the entire financial system, including 
multiple markets and institutions, is simultaneously distressed, has 
generally been described as systemic risk [10]. The development of 
emerging economies is considerably affected by all kinds of domestic 
and foreign policies. To mitigate the risks to the global economy, gov-
ernments should consider flexible policymaking and undertake 
extraordinary actions to support macroeconomic functioning [11–13]. 

Furthermore, environmental challenges also disrupt the global 
economy. In the context of climate change, the world has entered a low- 
carbon age [14–17]. The 27th United Nations Climate Change Con-
ference deepened worldwide cooperation to reach net zero emissions, 
climate adaptation, investment, and financing. The climate red line 
brought new propositions for green development is the primary goal of 
economic transformation, which is an irreversible trend in the world. 
Keeping global temperature rise well below 2 ◦C requires a reduction of 
greenhouse gas emissions. The urgent need to develop low-pollution, 
low-emissions energy has placed enormous pressure on fossil fuel- 
based economic development and energy consumption structures 
[18–21]. Changing climate policies will have significant impacts on 
economic agents’ practices and the environmental system. Nevertheless, 
global temperatures are likely to rise by 3 ◦C by 2100, according to the 
draft of the fourth report by the Intergovernmental Panel on Climate 
Change of the United Nations [22], which will inevitably impose a far- 
reaching influence on global green development. Advancing climate 
change mitigation and adaptation requires a shift of capital allocation 
from traditional polluting approaches to green infrastructures and 
technologies. Accelerated low-carbon economic transformation has 
triggered an emerging global energy crisis, increasing the uncertainty of 
green development and the complexity of selecting the timing and pace 
of policy transformation [23,24]. Emerging economies are facing the 
dual challenges of maintaining stable growth and transforming green 
investment. Limitations in the known reserves of fossil fuel energy 
challenge the energy required by rapid economic development. How-
ever, emissions have been falling gradually in recent years in most 
advanced economies, in part because of the global economy’s weakness 
but also because of strengthened climate policies. Advanced economies 
should provide economic and technological support to emerging econ-
omies for energy upgrading and transformation [25–27] as a lack of 
climate policy coordination could pose a huge potential threat to sus-
tained global economic development. 

Stock markets are the barometers of national economies. As a rela-
tively new form of green investment, the ESG stock index (referencing 
enterprises’ efforts in environmental, social, and corporate governance) 
has become the most popular investment mode in the world. >60 
countries and regions have introduced ESG information disclosure re-
quirements. The practice of the ESG investment concept aligns with the 
requirements of the modern era of global social, environmental, and 
economic development, presenting a system for implementing and 
tracking green and sustainable development concepts. This approach 
helps to improve financial market and enterprise efficiency, guiding 
capital from the micro market, and promoting improved economic 
structure and development patterns [28,29]. Some researchers have 
quantified the policy risks associated with green investment and fossil 
fuel energy markets for the last few years, using green bonds and clean 
energy stocks as indicators. Studies have determined that uncertainty is 
a key risk factor affecting policy implementation effectiveness, which 

involves economic, monetary, and climate uncertainty. Such un-
certainties cannot be eliminated when the global economy is mired in a 
financial crisis. However, effective, and accurate quantitative charac-
terization of uncertainty can significantly improve strategic policy 
implementation to reduce the impact of policy uncertainty on steady 
and sustainable global economic development and contribute to green 
investment [30–36]. Therefore, it is crucial to determine how policy 
uncertainty (economic, monetary, and climate) and fossil fuel energy 
(crude oil and natural gas) generate varying degrees of risk spillover 
with global ESG investment. 

2. Literature review 

Policy uncertainty can cause microeconomic entities to reduce in-
vestment and indirectly affect the financial system and the economic 
cycle stability through investment and financing channels, causing 
fluctuations in energy markets and global green investment. 

Previous research has demonstrated that varying degrees of risk 
spillovers are caused by policy uncertainty and fossil fuel energy mar-
kets. Ji et al. [37] applied four types of delta conditional value-at-risk 
(ΔCoVaR) using six time-varying copulas to consider negative risk 
spillovers between energy returns (crude oil and natural gas) and 
changes in economic policy uncertainty (EPU). Chen et al. [38] exam-
ined spillover effects from a multiscale perspective using a wavelet- 
based BEKK-GARCH, determining that the spillover effects between 
the Brent crude oil market and EPU in Brazil, Russia, India, and China 
(BRIC countries) are time-varying across different wavelet scales in 
terms of direction and strength. Mokni et al. [39] employed time- 
varying parameter vector autoregression combined with measures of 
spillover variance decomposition (Diebold and Yílmaz [40]). The results 
revealed significant effects of the EPU on the connectedness of the oil 
market in static and regime-switching frameworks. Apostolakis et al. 
[41] examined the risk spillovers of EPU and the nonfinancial Brent oil 
market and its prices. The dynamic analysis indicates that spillovers 
increased substantially during the COVID-19 pandemic, but did not 
exceed the level during the 2009 GFC. He et al. [42] applied the 
TVP-FAVAR model, finding severe volatility spillover between the EPU 
and the energy market (oil importing and exporting) was stronger dur-
ing crisis periods, such as the debt crisis, energy contention, and oil price 
turbulence. Huang et al. [43] used a spillover directional measure to 
investigate the cross-category spillovers between crude oil markets and 
EPU. The results revealed the spillover effects based on the time-domain 
framework showed a strong connectedness between EPU and crude oil 
markets. Ren et al. [44] proposed a rolling tail-event-driven network 
technique, determining that the effect of EPU on the risk spillover of the 
crude oil futures is asymmetric and heterogeneous. Dai and Zhu [45] 
applied a combination of quantile VAR and TVP-VAR models based on 
generalized forecast error variance decomposition. The results suggest 
that the risk spillover of proxies under 0.01-quantile and 0.99-quantile 
are much larger than those under mean and median (0.5-quantile). 
[46–48]) employed quantile connectedness to examine the dynamic 
spillover between climate policy uncertainty (CPU) and crude oil market 
uncertainty. The results demonstrated higher spillovers at extreme 
quantiles. 

Ongoing environmental deterioration and the depletion of conven-
tional resources promote the development of new energy is promoted. In 
recent years, the development of green financial systems has acceler-
ated, and green low-carbon industries have flourished, providing strong 
motivation for the development of green investment. 

Some studies have explored the spillover effects between policy 
uncertainty and green investment. Lundgren et al. [49] apply nonlinear 
causality and connectedness to examine the spillovers between EPU and 
green investment (clean energy and renewable energy–stock indices). 
The authors determine that most EPU concerns were net transmitters of 
volatility connectedness during the GFC and European sovereign debt 
crisis. Yang et al. [50] measured four types of (normalized) ΔCoVaR 
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incorporating variational mode decomposition and time-varying copula 
approaches. The results revealed that significant risk spillovers from 
geopolitical risk (GPR) to the renewable energy–-stock markets and the 
risk spillovers do not exhibit a clear positive or negative pattern. Long 
et al. [30] investigated the quantile connectedness between EPU and 
green bonds in the US, Europe, and China using a quantile VAR model- 
based connectedness approach, finding that spillover effects under 
extreme market conditions were significantly higher than those under 
normal market conditions. Cepni et al. [51] examined the spillover 
effects of climate uncertainty across the conventional European ESG 
financial markets. The results demonstrated that ESG bonds are partic-
ularly useful for managing transition risk exposure concerning envi-
ronmental policies. Lorente et al. [52] used quantile vector 
autoregression and wavelet coherence, finding that green bonds are 
negatively connected to GPR at extreme 10th and 90th quantiles. Ren 
et al. [35] used dynamic bidirectional causality between CPU and 
traditional energy, represented by oil and natural gas and green bonds, 
determining that CPU is more inclined to act as a risk recipient than a 
sender of market volatility spillover. Xia et al. [53] applied asymmetric 
time-varying connectedness and EGARCH models, demonstrating 
asymmetric connectedness between green bonds and EPU. Uddin et al. 
[54] constructed a high-dimensional network between firms using 
generalized error decomposition and a sparse vector autoregression 
framework with a latent common factor. The results showed that the 
renewable energy subsector has the highest uncertainty transmission 
compared with other underlying subsectors. Lucey et al. [55] used a 
time-varying copula approach to compare the interconnectedness and 
risk profiles of green assets with others. The findings revealed that green 
assets’ relationships with conventional commodities and markets can 
shift significantly during extreme uncertainty. 

As described above, some studies have focused on the risk spillovers 
between policy uncertainty, energy markets, and green investment. 
However, limited research has included the critical issue of risk spillover 
between policy uncertainty (monetary or climate), fossil fuel energy 
(crude oil and natural gas), and global (emerging and advanced econ-
omies) ESG investment. Moreover, suffering from multiple black swan 
events worldwide, the volatility of policy uncertainty, fossil fuel energy, 
and green investment undergoes periodic transitions, long-term mem-
ory, and asymmetrical features, including the dual characteristics of 
time and frequency domains [35,56,57]. Hence, wavelet multiscale and 
the time-domain framework have been applied widely. Although these 
methods can distinguish volatilities of sample size between long and 
short-term observations from a multiscale perspective, minimal research 
has quantified periodic volatilities using time-frequency domain anal-
ysis, as such risk spillovers based on time-frequency domains are chal-
lenging to capture. Furthermore, TVP-VAR and quantile regression 
serial model combined with variance decomposition have been broadly 
applied to capture dynamic and asymmetrical risk spillovers. While such 
models are effective for capturing time-varying asymmetry character-
istics during the mean process, they are inefficient for tracking time- 
varying periodical, long-term memory, and asymmetrical volatility in 
the process of variance. Therefore, these models can be inaccurate in 
determining the periodic and asymmetrical volatility risk spillovers for 
accurate time-frequency analysis. In addition, certain factors in macro-
economic and financial markets can lead to policy uncertainty, as well as 
common substantial fluctuations in fossil energy markets and global ESG 
investments. However, few literatures consider the common factor of 
high-volatility state spillovers between them in the time-frequency 
analysis. 

This study makes several contributions in this regard. First, we 
provide novel empirical evidence concerning the spillover network be-
tween policy uncertainty, fossil fuel energy, and global ESG investment. 
Although some researchers have recently focused on the impacts of 
different policy uncertainties and fossil fuel energy on ESG performance, 
ESG scores have primarily been represented by individual companies’ 
stocks based on various country’s ESG considerations [51,58–64]. 

Limited evidence has been provided analyzing the risk spillover between 
various policy uncertainties and global ESG investment in emerging and 
advanced economies. Our results from investigating this issue can pro-
vide countries around the world with valuable insights to strategically 
establish new economic development models, invest in addressing 
climate change, promote green economic growth and employment, 
restore the natural ecosystems that support the global economy, and 
advance economic transformation to achieve sustainable development. 

Second, this study accurately identifies time-varying irregular and 
extreme volatilities by introducing a combined time-series wavelet 
decomposition (TVF-EMD) model and Pearson correlation coefficient 
(PCC) algorithm. In recent years, the global economy and financial 
markets have been frequently impacted by uncertain events (such as 
regional wars, financial crises, debt crises, global economic slowdowns, 
meteorological factors, natural disasters, and other economic shocks), 
with a higher probability of outliers appearing in data than that of 
normal distributions. The clustering nature of economic fluctuations 
generates numerous outliers that deviate from the mean and appear in 
clusters. In other words, some uncertain events can cause short-term, 
nonsystemic risk spillovers, whereas others can cause significant long- 
term systemic risk spillovers. Therefore, it is particularly crucial to 
conduct in-depth research on the risk spillovers of abnormal (irregular 
and extreme) fluctuations in economic and financial markets using 
wavelet analysis as a research method. 

Third, this study contributes to advancing research approaches by 
establishing a long memory and asymmetric GARCH model combined 
with Markov switching vector autoregression and asymmetric TVP-VAR 
variance decomposition. In addition, this study uses a high-dimensional 
network using generalized error decomposition and a sparse vector 
autoregression framework with a latent common factor [54,65]. When 
policy uncertainty increases, it will generate some risk spillovers on 
global macro factors such as countries’ market rates, resident con-
sumption, enterprise production, and cross-border capital flow, which 
can subsequently impose different risks and affect enterprises’ decision- 
making and practices concerning green investment. Furthermore, with 
the occurrence of global economic and financial crises, extreme 
weather, and other natural disasters, energy supply and demand can 
become seriously unbalanced, which raises green energy prices 
increasing production costs. This slows down the pace of enterprises’ 
green innovation and energy transformation, which exacerbates the 
complexity of policy uncertainties. Our network analysis enables us to 
determine the interconnectedness of systemic and nonsystemic risk from 
policy uncertainty, fossil fuel energy, and global ESG investment. 

This study yields some notable results. First, core risks from the 
natural gas market can directly or indirectly promote global ESG in-
vestment, regardless of how great the short-term economic changes are. 
Second, when the economy slows, risks from US EPU can individually 
intensify the uncertainty in China’s economic policy. Therefore, US 
monetary policy can deeply influence advanced economies’ ESG in-
vestment. Furthermore, US EPU can have direct spillover effects on 
emerging economies’ ESG investment. Moreover, during the economic 
recession, the risk of significant turbulence from China’s economic 
policy can be conveyed to the US’s CPU, which can considerably influ-
ence advanced economies’ ESG investment. Third, when irregular 
events occur, positive risks can be shaped by US EPU, and negative risks 
can arise in the natural gas market. Finally, when extreme events 
emerge, the significantly positive risk from China’s EPU can simulta-
neously exacerbate US EPU, with a strong influence on emerging 
economies’ ESG investment. However, negative spillover from US 
monetary policy uncertainty (MPU) can directly transmit to global ESG 
investment. 

The remainder of this paper is organized as follows. Section 3 in-
troduces the methodology of the study. Section 4 details the data 
description. Section 5 presents the empirical results. Section 6 imparts 
concluding remarks and policy implications. 
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3. Methodology 

3.1. Time-varying filter-based empirical mode decomposition 

Recently, the world has entered an era in which systemic risk is high 
and unpredictable. The global economy remains full of uncertainty, 
which enhances the volatilities in the macroeconomy and financial 
markets. EMD (empirical mode decomposition) is proposed to deal with 
the nonlinear and nonstationary indicators. This means the method can 
continuously separate unstable signals from the original sequence, and it 
can also identify spatial inconsistencies and structural transformation 
intervals from the original sequence. 

Huang et al. [66] proposed the EMD, the purpose of this algorithm is 
to decompose the poorly performing signals into a set of well-performing 
IMFs (intrinsic mode functions). The IMF must meet two properties: 
Firstly, the number of extreme points (maximum or minimum) of the 
signal is equal to or significantly different from the number of zero 
crossing points. Secondly, the average value of the upper envelope 
composed of local maxima and the lower envelope composed of local 
minima is zero. The steps of the EMD algorithm are as follows: First, 
calculate all the maximum and minimum points of the original data 
series, fit them into the upper and lower envelopes of the series with 
cubic spline functions, and obtain the average value of the upper and 
lower envelopes Mt. The original data series obtained a new sequence 
Ht .Since not a stationary time series, the above process needs to be 
repeated to obtain the first intrinsic mode function component C1, which 
represents the highest time-frequency component of the data. Then, the 
original data sequences are subtracted to get a new data sequence Rt. 
Repeat the above operation to obtain the second intrinsic mode function 
component C2. Afterward, repeat the above operation until the last data 
sequence cannot be decomposed. At this moment, Rn represents the 
trend of the original data series Xt. However, the EMD method has some 
shortcomings. For instance, due to the non-uniform distribution of signal 
extreme points, mode mixing may occur in IMFs. To address this issue, 
Wu and Huang [67] proposed the EEMD (Ensemble Empirical Mode 
Decomposition) method. The basic principle is to add a set of white noise 
to the original signal, decompose the signal with white noise by using 
EMD, and then repeat the above steps. However, the EEMD method still 
has some shortcomings. For example, as the number of white noise in-
creases, the speed of the EEMD algorithm will inevitably decrease. If 
white noise is added multiple times, the reconstruction error will 
increase. 

The calculation and use of the local mean function in traditional 
EMD methods can be seen as a low-pass filtering process. In the TVF- 
EMD method, B-spline filters are used as low-pass filters to filter out 
low-frequency components and achieve the same effect as local mean 
functions. Compared to traditional linear filters, B-spline filters are 
relatively easy to construct cutoff frequencies and can adaptively change 
over time, giving them better capabilities for nonlinear and non- 
stationary signals (Chaitanya et al. [68], Song et al. [69], Guermoui 
et al. [70], Jamie et al. [71], Song et al. [72], [46–48]). Furthermore, 
compared with conventional fixed learning rate algorithms, adaptive 
optimization algorithms have the following advantages: firstly, they can 
dynamically adjust the learning rate based on the characteristics of 
parameters, improving the convergence speed and performance of 
model training. The second is the ability to cope with gradient changes 
of different parameters, improving the robustness and generalization 
ability of the model (Ye et al. [73], Ranjan et al. [74], Zhou et al. [75], 
Yu et al. [76]). However, adaptive optimization algorithms also face 
challenges such as hyperparameter selection and overfitting, requiring 
reasonable parameter tuning and optimization in practical applications. 

Based on this point, we select the TVF-EMD model proposed by Li 
et al. [77]. The main idea of this method is centered on the localized 
cutoff frequency and then proceeds with a time-varying filtering pro-
cedure. Compared with EMD and EEMD, TVF-EMD not only solves the 
problems of modal separation and signal intermittency but also solves 

the problem of modal aliasing and preserves the time-varying charac-
teristics of the signal. The detailed steps of this method can be listed as 
follows.  

(a) Calculate local cutoff frequency 

First, calculate the instantaneous amplitude and instantaneous phase 
and frequency from the original signal. Then, based on the local 
maximum and local minimum, the interpolation operation can be ob-
tained. Simultaneously, by utilizing the local maximum and minimum 
values of instantaneous amplitude A(t), the instantaneous mean and 
instantaneous envelope are obtained through interpolation operations. 
Finally, calculate the local cutoff frequency φ́bis(t). 

´φ1(t) =
η1(t)

2a2
1(t) − 2a1(t)a2(t)

+
η2(t)

2a2
1(t) + 2a1(t)a2(t)

(1)  

´φ2(t) =
η1(t)

2a2
2(t) − 2a1(t)a2(t)

+
η2(t)

2a2
2(t) + 2a1(t)a2(t)

(2)  

φ́bis =
φ́1(t) + φ́2(t)

2
=

η2(t) − η1(t)
4a1(t)a2(t)

(3)    

(b) Signal reconstruction 

Rearrange to solve intermittent problems and reconstruct the signal 
h(t) based on the adjusted cutoff frequency. 

h(t) = cos
[ ∫

´φbis(t)dt
]

(4)    

(c) Cut-off criteria 

Take the extreme point as a node and use spline interpolation B for 
signal approximation x(t). The approximation result and the calculation 
cut-off criteria are θ(t). If it is satisfied, and there is a given bandwidth 
threshold. Then is an IMF. If not, let x1(t) = x(t) − y(t), repeat the above 
steps. 

θ(t) =
BLoughlin(t)

φavg(t)
(5) 

In the above equation, BLoughlin(t) is the Loughlin instantaneous 
bandwidth of the component signal. φavg(t) is the weighted mean of 
instantaneous phase and frequency. 

φavg(t) =
a2

1(t)φ́
2
1(t)

a2
1(t) + a2

2(t)
(6)  

BLouglin(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
á2

1(t) + á2
2(t)

a2
1(t) + a2

2(t)
+

a2
1(t)a2

2(t)[φ́1(t) − φ́2(t) ]2

[a2
1(t) + a2

2(t) ]
2

√

(7)  

3.2. Pearson correlation coefficient 

The Pearson correlation coefficient is used to measure whether two 
datasets are on the same line, and it can measure the relationship be-
tween two random variables (real-valued vectors). Based on the TVF- 
EMD method, the variables of policy uncertainty, fossil energy, and 
global ESG investment can be divided into different IMF components. 
Then the Pearson correlation coefficient of IMF components for two of 
them can be expressed as the covariance of the two IMFs, which can be 
divided by the product of their standard deviations. It can be computed 
as follows: 
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r =
N
∑

cići −
∑

ci
∑

ći
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑

c2
i − (

∑
ci)

2
√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

N
∑

ć2
i − (

∑
ći)

2
√ (8) 

Indicate the different IMFs and N indicates the number of IMFs. The 
coefficient ranges from − 1 to 1, and it is invariant to linear trans-
formations of either variable. If satisfied, it can only be said that there is 
no linear correlation between and y, and it cannot be said that there is no 
correlation. The absolute value of the correlation coefficient is larger, 
the correlation is stronger: the correlation coefficient is nearer to 1 or −
1, the correlation is stronger, the correlation coefficient is nearer to 0, 
and the correlation is weaker. Based on the Pearson correlation coeffi-
cient, the IMF components can be reconstructed into high-frequency 
components, low-frequency components, and long-term trends. 

3.3. Markov switching autoregression long memory and asymmetry 
GARCH 

A matrix contains a time series that follows a vector autoregressive 
system with ϕs(t) as the matrix of parameters: 

ct = ϕs(t)ct− 1 + εt (9) 

Changes in the state of the vector ct (indicate the high frequency or 
low frequency of the policy uncertainty, fossil energy, and global ESG 
investment) in the Markov chain with the time step is called evolution or 
transition, which means the low volatility and high volatility. Since the 
state space of the Markov chain is set to be limited, the transition 
probabilities of all states can be arranged in a matrix in a single-step 
evolution, and the following stochastic matrix can be obtained as 
follows: 

P =

[
p11 p12
p21 p22

]

(10) 

Where the two-state transition probabilities are expressed as follows: 
This means that the probability of a switch from state 2 to state 1 be-
tween time t and t+ 1 will be given by p12. ϕs(t) indicates the vector 
autoregressive coefficient of lagged variables under a state transition 
regime-switching process. 

εt subjects to normal distribution that follows two-state regime 
switching behavior with covariance matrix: 

εt ∼ N
(

0,
∑

st

)
(11) 

Then, the two-state conditional variance switching model is estab-
lished as a long memory and asymmetry process: 

σδs(t)
t,s(t) = ωs(t) +

{
1 −

[
1 − βs(t)(L)

]− 1ϕ(L)(1 − L)ds(t)
}(

|εt | − γs(t)εt

)δs(t)

(12)  

where ωs(t) > 0 must be satisfied in eq. (12). The fractional integral 
parameter refers to the long memory process in the state s(t). 
γs(t)represents asymmetry parameter in the state s(t). σ2

t,s(t) is the state- 
dependent conditional variance (low volatility and high volatility) at a 
time for the variables. L is the lag operator. 

3.4. High-dimensional VAR with a common factor 

By reference to Uddin et al., [54], we consider a p-order vector 
autorepression (VAR) process with common factors (Miao et al., [65]). 

ct = ϕtct− 1 +Λ0f0 + εt (13)  

where ct indicates the high frequency or low frequency of policy un-
certainty, fossil energy, and global ESG investments under a high vola-
tility state. Λ0 is a factor-loading matrix and is a dimensional vector of 
common factors. 

3.5. TVP-VAR-based asymmetric spillover network approach 

To capture the asymmetric spillover and connectedness, we propose 
the MS-VAR-FIAPARCH and VAR-CF-FIAPARCH combined with the 
TVP-VAR-DY approach proposed by Antonakakis et al., [78]. Referring 
to Cheng et al., [79], we introduce the FIAPARCH model with the 
TVP-VAR-DY to obtain the asymmetric spillover effect and 
connectedness: 

ct = E(ct |Ωt− 1 )+ εt (14)  

σδ
t = ω+

{
1 − [1 − β(L) ]− 1ϕ(L)(1 − L)d

}
(|εt | − γεt )

δ (15)  

where ct indicates the policy uncertainty, fossil energy, and global ESG 
investment variables under time-frequency components. Ωt− 1 is the in-
formation set at a time t − 1. E(.|. ) denotes the conditional expectation 
operator, εtis the disturbance term (or unpredictable part) with E(εtεs) =

0,∀t ∕= s. The parameter setting in eq. (15) is like eq. (12). According to 
the eq. (14) and (15), the conditional volatility can be decomposed into 
positive volatility (good volatility) and negative volatility (bad 
volatility). 

Nt =

{
0, if V− = σ2

t < 0
1, if V+ = σ2

t ≥ 0
(16)  

V́+ = Nt • σ2
t (17)  

V́− = (1 − Nt) • σ2
t (18) 

The TVP-VAR based on variance decomposition proposed by Diebold 
and Yilmaz [80] can be applied to examine the risk spillovers. It captures 
the time-varying parameters of this model by using the multivariate 
Kalman filter approach. Hence, the approach can not only solve the 
problem of selecting the rolling window size but also prevent the loss of 
valuable observations. Moreover, it can control the extreme values that 
exist in the parameter estimation process. 

The simplified process of TVP-VAR is as follows: 

Vt = Φ0,t +Φ1,tVt− 1 +Φ2,tVt− 2 +⋯+Φp,tVt− p + εt (19)  

where Vt is the dimensional column vector of conditional volatilities 
(low volatility, high volatility, positive volatility, and negative vola-
tility). It meets the moving average process: 

Vt =
∑∞

i=0
Aiεt− i (20)  

where Ai is the autoregressive coefficient matrix, εt is the stochastic 
disturbance variance. Then calculate the coefficient matrix of the cor-
responding TVP -VAR model by using a recursive relationship: 

Ah,t = Φ̂1,tAh− 1,t + Φ̂2,tAh− 2,t +⋯+ Φ̂p,tAh− p,t (21) 

According to eq. (20), we can calculate the corresponding coefficient 
matrices A0,t, AH− 1,t in the H-step forward prediction. The estimated 
value of the conditional covariance matrix of the disturbance terms 
∑

t = Ĉ
t− 1
t D̂t

´(
Ĉ

t− 1
t
)
. The N× N dimensional generalized variance 

decomposition matrix can be from the generalized pulse function, the 
computational formula for the elements in the matrix is as follows: 

θij,t(H) = σ̂ − 1
jj,t

∑H− 1

h=0

(

éi Âh,t

∑

t
ej

)2/
∑H− 1

h=0

(
éi Âh,t

)∑
Âh,iei (22) 

Among them, θij,t(H) is the element in the row and column of the 
matrix Θt. It represents the proportion of the total predicted variance of 
the variable affected by the variable. σ̂ jj,t is the diagonal element and it 
denotes the variance of the disturbance term. And it plays a role in 
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selecting vectors. However, the generalized variance decomposition 
matrix calculated directly from the above equation often does not meet 
the requirement that the sum of row totals equals 1. Therefore, to align 
with the economic implications of traditional variance decomposition, 
we need to standardize the matrix and obtain the transformed general-
ized variance decomposition matrix Θ̃t. The calculation formula for 
matrix elements is as follows: 

θ̃ij,t(H) = θij,t(H)

/
∑N

j=1
θij,t(H) (23) 

Calculating the time-varying volatility spillover index based on the 
transformed generalized variance decomposition matrix Θ̃t:  

(a) Total spillover index: summation of all non-diagonal elements of 
the generalized variance decomposition matrix, then divide by 
the number of variables to obtain the total spillover effect: 

TCI = (1/N)
∑N

i,j=1,i∕=j
θ̃ij,t(H) (24)   

(b) Single spillover index: reflects the risk spillover relationship be-
tween a certain variable and all other variables, including over-
flow spillover index, inflow spillover index, and net overflow 
spillover index. Among them, the “spillover index” represents the 
total spillover effect of the variable on all other variables and it is 
recorded by Toi,t(H). The “spillover index” represents the total 
spillover effect of the i–th variable from all other variables and is 
recorded by Fromi,t(H); The “net overflow index” is the overflow 
index minus the inflow index, it represents the net overflow effect 
of the variable on all other variables and recorded by Neti,t(H). 
The corresponding formula is as follows: 

Toi,t(H) =
∑N

j=1,j∕=i
θ̃ji,t(H) (25)  

Fromi,t(H) =
∑N

j=1,j∕=i
θ̃ij,t(H) (26)  

Neti,t(H) = Toi,t(H) − Fromi,t(H) (27)    

(c) Net Paired Market Spillover Index: it represents the net overflow 
effect of the i − th variable on the variable: 

NPDCij(H) = θ̃ji,t(H) − θ̃ij,t(H) (28) 

Based on the dynamic spillover indexes, the corresponding dynamic 
connectedness can be obtained from it. 

4. Data description 

The study uses monthly policy uncertainty indices (China and US 
EPU, US MPU, and US CPU), fossil fuel energy prices (WTI crude oil and 
natural gas), and the global ESG investment index for emerging and 
advanced economies from November 2014 to April 2023 as the obser-
vation samples. Data for policy uncertainty are sourced from the official 
EPU website (policyuncertainty.com/index.html). Data for WTI crude 
oil and natural gas are obtained from the official US Department of 
Energy website (http://www.eia.gov/), the global ESG investment index 
is from the MSCI ESG Focus website (https://www.msci.com/our-soluti 
ons/indexes/esg-focus-indexes). All variables are calculated by using 
the logarithmic differences: 

Rt = log(Xt/Xt− 1) (29)  

where Rt represents the original data at time t. 

Fig. 1 reveals that all variables exhibit significant fluctuations, 
indicating that countries across the world are bearing double impacts 
from global economic risks and enhanced financial risks. Furthermore, 
climate change is correlated with increased global energy prices and can 
also result in global supply shortages, posing a risk to economic growth 
with a significant impact on the smooth implementation of global en-
ergy conservation and green investment. Fig. 2 illustrates the irregular 
and extreme risks that can cause all variables to exhibit volatility clus-
tering effects. 

Figs. 3 demonstrate the conditional high volatility under time- 
frequency components based on the MS-VAR-FIAPARCH estimation 
for policy uncertainty, fossil fuel energy, and ESG investment, revealing 
consistent irregular and extreme volatility trends. Among them, the 
fluctuation range of US MPU, the irregular volatility of US CPU, and the 
extreme volatility of China’s EPU is the largest. In addition, the high 
frequency and large range of fluctuations appear to be normal charac-
teristics of irregular events, but exceeding a certain limit in amplitude 
and frequency of fluctuations means the aggregation of risks, and 
extreme fluctuations exhibit cyclical characteristics. 

Fig. 4 illustrates the common factors of policy uncertainty, fossil fuel 
energy, and ESG investment under time-frequency components with 
high-volatility states. The common factor can consistently identify 
sources of risk from irregular and extreme events in the short and long 
term. The findings demonstrate a negative fluctuation trend. Among 
them, the common factors in the low-frequency component dropped to a 
relatively low point in 2015 and 2020, respectively, which corresponds 
with the global economic crisis triggered by the regional stock index 
crisis and the COVID-19 pandemic. However, common factors in high- 
frequency components exhibit wave aggregation effects, which corre-
spond to the impact of numerous irregular global economic and finan-
cial market events such as natural disasters, the pandemic, and regional 
conflicts. 

Table 1 presents the descriptive statistics regarding policy uncer-
tainty, fossil fuel energy, and ESG investment logarithmic differences, 
revealing that the mean of the policy uncertainty is larger than fossil fuel 
energy and ESG investment, and the minimum values are all negative. 
The volatilities of policy uncertainty and fossil fuel energy measured by 
the standard deviation are much greater than those of ESG investment. 
Negative values of skewness show that the probability distributions of 
fossil fuel energy and ESG investment are skewed to the left. The values 
of kurtosis indicate that all the variables have leptokurtosis and fatter 
tails, especially fossil fuel markets. The Jarque–Bera test shows that all 
the variables differ from the normal distribution, and the Ljung–Box 
autocorrelation test shows that the variables are serially correlated. 
Augmented Dickey-Fuller and Kwiatkowski–Phillips–Schmidt–Shin tests 
confirm the stationarity of all variables. 

5. Empirical analysis 

5.1. Time-varying filter-based empirical mode decomposition and signal 
reconstruction 

The occurrence of global black swan events (regional wars, economic 
crises, banking crises, the pandemic, and natural disasters) has had 
varying degrees of impact on the adjustment of international macro-
economic policies and low-carbon, energy-saving, and environmental 
protection policy implementation. In this regard, policy uncertainty, 
traditional energy price, and ESG investment indices all demonstrate 
abnormal fluctuations, and the wavelet decomposition approach can 
accurately depict these corresponding fluctuations. 

Fig. 5 presents the IMFs of policy uncertainty, fossil fuel energy, and 
global ESG investment decomposed using the TVF-EMD model. Previous 
aspects of the IMFs exhibit a characteristic of short-term volatility 
clustering effects. Periodic and asymmetric volatilities are discernible in 
the long term in the remaining IMFs. The IMFs decomposed using the 
TVF-EMD model show different uniform sizes and degrees. To 
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differentiate the high- and low-frequency components of the IMFs, we 
next apply the PCC. 

Fig. 6 demonstrates the PCCs of policy uncertainty, fossil fuel energy, 
and global ESG investment. The PCCs of IMF1 to IMF6 in policy un-
certainty and ESG investment (China EPU, US EPU, US MPU, and US 
ESG) are relatively high. Furthermore, an analogous outcome occurs in 
IMF1 to IMF7 in US CPU, crude oil, advanced ESG investment, and 
emerging ESG investment; however, the PCCs of IMF1 to IMF8 in natural 
gas are relatively high. This indicates IMF1 to IMF6 of the policy un-
certainty and the ESG investment (China’s EPU, US EPU, US MPU, and 
US ESG) can be restructured to the high-frequency component, and the 

remainder, except for the last one, can be restructured to the low- 
frequency component. Likewise, the other IMFs of policy uncertainty, 
fossil fuel energy, and ESG investment (US CPU, crude oil, natural gas, 
advanced ESG, and emerging ESG) can also be restructured as above. 

Fig. 7 demonstrates the high-frequency component of policy uncer-
tainty, fossil fuel energy, and global ESG investment, reflecting the 
inherent contradictions across political, economic, financial, and natural 
environments, indicating various types of irregular crises, such as 
frequent adjustments in global policies, geopolitical unrest, natural 
hazards, and the pandemic. Furthermore, the high-frequency compo-
nents of policy uncertainty are particularly significant. 
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Fig. 1. Policy uncertainty, fossil energy, and ESG investment’s value and price.  

Fig. 2. Policy uncertainty, fossil energy, and ESG investment’s logarithmic difference and return.  
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Fig. 8 demonstrates the low-frequency component of policy uncer-
tainty, fossil fuel energy, and global ESG investment, revealing that 
events (economic and banking crises) can generate increasing global 
systemic risks, causing cyclical and asymmetric fluctuations to occur. 
The low-frequency components of EPU and fossil fuel energy all have a 
relatively large amplitude. 

Fig. 9 demonstrates the long-term trend of policy uncertainty, fossil 
fuel energy, and global ESG investment. The long-term trend of Chinese 
and US EPU declined to a low point in 2017 and 2022 and continued to 

increase in 2023. Furthermore, the US MPU has exhibited a slow upward 
trend since falling to a low point in 2019; however, the US CPU has been 
on a downward trend since 2015. In addition, long-term fossil fuel en-
ergy trends continued to decline after reaching high points in 2017 and 
2022. Furthermore, the long-term trend of global ESG investment 
continued to decline after reaching a high point in 2020. 

Fig. 3. Policy uncertainty, fossil energy, and ESG investment’s high volatility under time-frequency components.  

Fig. 4. Policy uncertainty, fossil energy, and ESG investment’s time-frequency common factor under high volatility state.  

Table 1 
Descriptive statistics for the policy uncertainty, fossil energy, and ESG investment’s logarithmic difference.   

China EPU US 
EPU 

US 
MPU 

US 
CPU 

Crude 
Oil 

Natural Gas US 
ESG 

Emerging ESG Advanced ESG 

Min − 0.85 − 0.83 − 1.24 − 0.94 − 0.57 − 0.75 − 0.13 − 0.17 − 0.15 
Max 0.90 0.89 1.67 1.23 0.55 0.68 0.12 0.14 0.15 
Mean 0.01 0.01 0.02 0.01 0.001 − 0.005 0.007 0.0002 0.002 

std. dev 0.33 0.29 0.46 0.35 0.13 0.22 0.05 0.05 0.05 
Skewness − 0.20 0.25 0.61** 0.27 − 0.79*** − 0.28 − 0.49** − 0.16 − 0.29 
Kurtosis 0.39 0.62 1.73*** 1.03** 6.75*** 1.36*** 0.52 0.77 1.06** 
Jarque 

-Bera 1.31 2.65 18.98*** 5.66* 202.19*** 9.12** 5.21* 2.91 6.16** 

ARCH -LM(10) 1.68 1.04 0.54 0.78 15.32** 1.14 1.54 0.53 1.28 
Q(20) 41.24** 45.85** 31.10 41.90** 29.08 48.00** 17.38 13.88 9.62 
Q2(20) 31.49* 17.83 15.03 15.98 73.37** 18.95 24.22 13.02 17.81 
KPSS 0.13*** 0.04*** 0.04*** 0.02*** 0.10*** 0.05*** 0.08*** 0.10*** 0.05*** 
ADF − 7.09*** − 8.94*** − 9.70*** − 8.29*** − 6.79*** − 5.87*** − 6.02*** − 5.78*** − 5.84*** 

Notes: The table is a report on the policy uncertainty, fossil energy, and ESG investment’s logarithmic differences. J-B, Q(20), Q2(20), and ARCH(10) are respectively 
represented Jarque-Bera normal distribution test, Ljung-Box auto-correlation test in 20 order, Engle [81] test for conditional heteroscedasticity. Augmented 
Dickey-Fuller, Kwiatkowski-Phillips-Schmidt-Shin is used to test for unit root and stability. **and *** are represented for statistical significance at the 5% and 1% 
levels. 
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5.2. Time-frequency risk spillover from a periodic perspective 

Based on high- and low-frequency time states, we reveal prominent 
periodic risk spillovers between policy uncertainty, fossil fuel energy, 
and global ESG investment. Therefore, this study employs the Markov 
switching autoregressive model combined with long-term memory and 
asymmetrical GARCH to describe periodic risk spillovers. 

Table 2 demonstrates the high-frequency components of policy un-
certainty under MS-VAR-FIAPARCH parameter estimation. US EPU, 
MPU, and CPU exhibited positive and negative mean spillovers to 
China’s EPU in a low-volatility state, whereas positive mean spillovers 
occurred in almost all high-volatility states. China’s EPU, US MPU, and 
US CPU all correlated with the emergence of a low-volatility regime of 

negative and positive mean spillovers to the US EPU. However, mean 
spillovers were positive in almost all high-volatility states. China’s EPU, 
US EPU, and US CPU all generated alternate negative and positive mean 
spillovers in the two-volatility state. Furthermore, China’s EPU and US 
EPU produced negative and positive mean spillovers to the US CPU in a 
low-volatility state. Finally, positive mean spillovers were produced in 
all high-volatility states. 

Table 3 demonstrates the high-frequency components of fossil fuel 
energy under MS-VAR-FIAPARCH parameter estimation. Mean spill-
overs from the crude oil market to the natural gas market alternated 
positively and negatively under the two-volatility state. The natural gas 
market had negative mean spillovers to the crude oil market in the high- 
volatility state. Table 3 demonstrates the high-frequency components of 

Fig. 5. Policy uncertainty, fossil energy, and global ESG investment’s IMFs.  

L. Lin et al.                                                                                                                                                                                                                                       



Applied Energy 368 (2024) 123432

10

global ESG investment under MS-VAR-FIAPARCH parameter estimation. 
Negative dominated mean spillovers appeared to be more easily 
generated in the low-volatility state, and positive and negative changes 
formed in the high-volatility state. 

Tables 4–6 present the low-frequency components of policy uncer-
tainty, fossil fuel energy, and global ESG investment under MS-VAR- 
FIAPARCH parameter estimation, revealing that policy uncertainties 
had mutually positive and negative mean spillovers with two states of 
volatility. The crude oil market exhibited positive and negative changes 
in mean spillovers to the natural gas market under the two-volatility 
state. At the same time, the natural gas market caused negative mean 
spillovers to the crude oil market in the high-volatility state. Further-
more, global ESG investment exhibited alternate positive and negative 
mean spillovers in the low-volatility state, demonstrating heterogeneous 
mean spillovers in the high-volatility state. 

Fig. 10 depicts the high-frequency components of risk spillovers from 
other variables with a two-state Markov chain. The risk of policy un-
certainty with a two-state Markov chain stems from other variables, 
revealing a downward trend from 2015 to 2019, with an upward risk 
trend in 2020, after which market volatility risk characteristics persisted 
between 2021 and 2023. Notably, opposite positions (downward and 
upward) of the risk of crude oil with a two-state Markov chain occurred 
between 2015 and 2019, and the risk trend sharply rose in 2020, then 
gradually declined between 2021 and 2023, with a relatively significant 
risk of a downward trend in the high-volatility state. The risk of natural 
gas presented small fluctuations between 2015 and 2019 in the low- 
volatility state, which surged in 2020 and significantly decreased since 
then, exhibiting a continuously declining risk trend in the high-volatility 

state between 2015 and 2022, which increased rapidly in 2023. More-
over, the risk of global ESG investment in the low-volatility state 
exhibited a decreasing trend between 2015 and 2019, the risk rose 
sharply toward a high point in 2020 and then decreased until 2023. The 
risk of global ESG investment in the high-volatility state decreased 
rapidly between 2015 and 2022; however, US ESG investment exhibited 
an upward trend between 2022 and 2023. 

The findings indicate that since 2015, insufficient global economic 
momentum has generated a declining trend of aggregate demand. In 
response, governments worldwide have introduced corresponding pol-
icies for economic stimulation. However, based on the total debt scale of 
some emerging and developed economies, investor sentiment has 
intensified since, which has exacerbated the volatility in financial 
markets. In addition, the Federal Reserve’s quantitative easing policies 
have further increased global inflation and reduced investment, coupled 
with the multiple, short-term black swan events (such as natural di-
sasters, trade disputes, the pandemic, and regional turbulence), global 
policy uncertainty continues to rise. Against the backdrop of a dual 
decline in global consumption and investment, the uneven fossil fuel 
energy supply and demand caused market price fluctuations, but the 
long-term risk is controllable overall. In addition, the mounting risk of 
global policy uncertainty will also influence the smooth implementation 
of ESG low-carbon energy conservation and environmental protection. 

Fig. 11 presents the low-frequency risk spillovers from other vari-
ables with a two-state Markov chain. The risk of policy uncertainty 
(China’s EPU, US EPU, and US MPU) in the low-volatility state main-
tained a downward trend between 2015 and 2023, and a similar trend 
can also be found in the high-volatility state between 2015 and 2019. 

Fig. 5. (continued). 
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However, the downward trend reversed between 2020 and 2023. 
Furthermore, the increasing trend of US CPU risk from other variables 
occurred in the low-volatility state, and a U-shaped risk trend appeared 
in the high-volatility state. Furthermore, decreased fossil fuel energy 
and ESG investment risks (US and emerging ESG) from other variables 
occurred in the low-volatility state between 2015 and 2022. Neverthe-
less, a continuous U-shaped risk from other variables appeared in the 
advanced ESG investment, and a similar finding occurred in the high- 
volatility state of fossil fuel energy markets and global ESG investment. 

The phenomena indicate that the advent of the COVID-19 pandemic 
globally in 2020 caused an acute global economic crisis. To address the 
potential depression, developed economies like the US applied massive 
demand stimulus policies, which generated supply contraction and de-
mand expansion and ultimately led to inflationary pressure. However, 
emerging economies like China did not adopt quantitative easing pol-
icies to stimulate demand but relied on expanding investment to stabi-
lize growth. Due to the unsustainability of expanding investment and 
sustained lockdown policies that sapped investor and consumer 

Fig. 6. Policy uncertainty, fossil energy, and global ESG investment’s PCC.  
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confidence, deflation and downward pressure on the economy emerged 
in China. Therefore, global policy uncertainty risks have steadily 
increased since 2020, triggering large fluctuations in fossil fuel energy 
markets and significantly impacting global ESG investment. 

Fig. 12 demonstrates the high-frequency risk spillovers to other 
variables with a two-state Markov chain, revealing a continuous 
downward trend between 2015 and 2021 that continued in the high- 
volatility state between 2022 and 2023. In contrast, a reversed trend 
occurred in the low-volatility state. Furthermore, the risk from the crude 
oil market to other variables operated at low points with a two-state 
Markov chain between 2015 and 2019, and rapidly reached the 
maximum value in 2020, decreasing sharply between 2021 and 2023. 
Similar patterns are also evident for global ESG investment in the low- 
volatility state. Moreover, a U-shaped risk trend from the natural gas 
market to other variables in the low-volatility state occurred between 
2015 and mid-June 2021, after which the trend of the risk declined 
rapidly. However, the inverted U-type risk spillover in the high- 
volatility state is presented throughout the sample period. Moreover, 
global ESG investment maintained an upward trend of risk spillover 
between 2022 and 2023. 

The rationale for this phenomenon is as follows. Affected by a series 
of irregular events since 2015, global enterprises reduced production 
capacity because of weak consumer demand, which was exacerbated by 
increased uncertainty in future geopolitical circumstances, weak pro-
ductivity growth, and an increasingly challenging financial environ-
ment. The total fixed capital formation and industrial output of 
developed economies significantly slowed or contracted, dragging down 

international trade and manufacturing in emerging markets, which 
triggered further weakness in the global economy. In response, global 
policy uncertainty intensified, the demand for fossil fuel energy further 
weakened, and the motivation to advance green production, energy 
savings, and emissions reduction likely declined. Therefore, an 
increased risk spillover from reduced global ESG investment occurred. 

Fig. 13 demonstrates the low-frequency risk spillovers to other var-
iables with a two-state Markov chain. The risk from China’s EPU to other 
variables with a two-state Markov chain remains high and volatile; 
however, the risk of US EPU to other variables in the low-volatility state 
continuously decreased between 2015 and 2023. A similar occurrence is 
also found in the high-volatility state, except for 2016 and 2020. An 
increased trend of US MPU risk to other variables in the low-volatility 
state occurred between 2016 and 2021, quickly declining between 
2022 and 2023. Furthermore, U-shaped risk spillover is demonstrated in 
the high-volatility state. However, the trend of the irregular U-shaped 
risk from fossil fuel energy to other variables occurred in the two-state 
Markov chain. Nevertheless, U-shaped and inverted U-shaped risk 
spillover from global ESG investment to other variables emerged 
continuously in the two-state Markov chain. 

The findings indicate that the world economy has been in an era of 
serious recession. Although the impact of COVID-19 on the macro-
economy has eased since 2020, the escalation of GPR between Russia 
and Ukraine combined with the withdrawal of major global central 
banks from loose monetary policies has triggered soaring commodity 
prices, crowding out the effect of inflationary pressure on the economy, 
and higher corporate credit financing costs, pushing major global 

Fig. 6. (continued). 
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economies back to the brink of economic recession. Therefore, global 
EPU and MPU significantly increased policy risks, aggravating fossil fuel 
energy fluctuations and resulting in persistently increased risk to global 
ESG investment. 

Fig. 14 demonstrates the high-frequency net spillovers with a two- 

state Markov chain. In the low-volatility state, net spillovers of policy 
uncertainty exhibit an overall negative trend from 2020 to 2023. In the 
high-volatility state, changes in positive and negative net spillovers of 
China’s EPU occurred between 2015 and 2023, while overall negative 
net spillovers of US EPU appeared between 2016 and 2023. However, US 

Fig. 7. Policy uncertainty, fossil energy, and ESG investment’s high-frequency component.  

Fig. 8. Policy uncertainty, traditional energy, and ESG investment’s low-frequency component.  
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MPU and CPU had positive net spillovers between 2018 and 2023. In the 
low-volatility state, the crude oil and natural gas markets exhibited 
overall negative and positive net spillovers between 2015 and 2023, 
respectively, and alternating positive and negative net spillovers in the 
high-volatility state occurred between 2015 and 2023. Furthermore, 
overall positive net spillovers of global ESG investment are evident be-
tween 2020 and 2023. Moreover, overall negative net spillovers 
occurred in the US and advanced ESG investment in the high-volatility 

state, with negative and positive net spillovers presented in the 
emerging ESG investment. 

Fig. 15 presents the low-frequency net risk spillovers with a two-state 
Markov chain. Chinese and US EPU demonstrate overall net positive risk 
spillovers with a two-state Markov chain, while US MPU exhibited 
positive and negative net spillovers with a two-state Markov chain, 
which is also found in global ESG investment. However, the US CPU and 
the crude oil market exhibited negative net spillovers in the low- 

Fig. 9. Policy Uncertainty, fossil energy, and ESG investment’s long-term Trend.  

Table 2 
The high-frequency components of policy uncertainty under MS-VAR-FIAPARCH parameter estimation.   

low volatility state high volatility state 

Mean process China EPU US EPU US MPU US CPU China EPU US EPU US MPU US CPU 

China EPU (− 1) − 0.45*** 
(0.00) 

− 0.06 
(0.52) 

0.03 
(0.78) 

− 0.15 
(0.15) 

0.08 
(0.70) 

0.06 
(0.81) 

-0.10 
(1.00) 

0.03 
(1.00) 

China EPU (− 2) − 0.24* 
(0.08) 

− 0.14** 
(0.02) 

− 0.11 
(0.29) 

− 0.09 
(0.44) 

− 0.08 
(1.00) 

− 0.02 
(1.00) 

0.17 
(0.78) 

0.20 
(0.38) 

US EPU (− 1) 
0.41** 
(0.02) 

− 0.64*** 
(0.00) 

− 0.09 
(0.65) 

0.09 
(0.55) 

0.19 
(1.00) 

0.15 
(1.00) 

0.69 
(0.26) 

0.09 
(0.65) 

US EPU (− 2) 
0.52*** 
(0.00) 

− 0.07 
(0.60) 

0.48** 
(0.01) 

0.24 
(0.11) 

-1.01*** 
(0.01) 

− 0.19 
(0.25) 

-0.77 
(0.30) 

− 0.47 
(0.23) 

US MPU (− 1) − 0.07 
(0.55) 

0.12 
(0.15) 

− 0.12 
(0.32) 

− 0.08 
(0.47) 

− 0.04 
(1.00) 

0.01 
(1.00) 

-0.77** 
(0.01) 

0.04 
(0.80) 

US MPU (− 2) − 0.11 
(0.40) 

0.03 
(0.70) 

− 0.16 
(0.17) 

0.02 
(0.81) 

0.13 
(0.24) 

0.02 
(0.90) 

-0.29 
(0.36) 

0.04 
(0.84) 

US CPU (− 1) 
− 0.36*** 
(0.00) 

− 0.11 
(0.22) 

− 0.29** 
(0.01) 

− 0.18** 
(0.03) 

0.32*** 
(0.00) 

0.15 
(0.56) 

0.12 
(0.68) 

− 0.40 
(0.00) 

US CPU (− 2) 
− 0.26** 
(0.04) 

0.02 
(0.80) 

0.07 
(0.52) 

− 0.48*** 
(0.00) 

0.19 
(0.19) 

0.07 
(0.75) 

− 0.05 
(0.84) 

0.41** 
(0.04) 

Variance process 

Constant 0.66** 
(2.22) 

0.87 
(0.40) 

1.00*** 
(468.8) 

1.00*** 
(1107.0) 

0.18** 
(2.48) 

0.10 
(1.01) 

1.00*** 
(320.9) 

0.77** 
(2.06) 

d-Figarch 
0.31 
(1.55) 

0.27** 
(1.99) 

0.30 
(0.40) 

0.10 
(0.65) 

0.10 
(1.31) 

0.10 
(1.22) 

0.03 
(0.41) 

0.01 
(0.07) 

ARCH 
0.40 
(0.40) 

0.10 
(0.03) 

0.40 
(0.09) 

0.26 
(0.39) 

0.40* 
(1.81) 

0.24 
(1.37) 

0.37 
(1.17) 

0.50 
(0.76) 

GARCH 0.43 
(0.44) 

0.38 
(0.13) 

0.52 
(0.16) 

0.20 
(0.36) 

0.46** 
(2.25) 

0.10 
(0.38) 

0.46 
(1.08) 

0.40 
(0.64) 

APARCH (γ) − 0.30 
(− 0.81) 

− 0.23 
(− 0.38) 

− 0.03 
(− 0.02) 

0.21 
(0.44) 

0.74 
(1.12) 

− 0.30 
(− 1.44) 

1.00*** 
(117.4) 

0.81 
(0.48) 

APARCH (δ) 
0.78* 
(1.85) 

0.19 
(0.06) 

0.0007** 
(2.36) 

0.0010 
(1.63) 

1.84*** 
(5.25) 

2.09*** 
(2.73) 

0.005* 
(1.74) 

0.36 
(0.55) 

Notes: The values in parentheses for the mean and variance processes represent p-values and t-values, respectively. *, ** and *** represent the significance at the 10%, 
5% and 1% level. 
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volatility state, whereas positive net spillovers are shown for the natural 
gas and crude oil markets in low- and high-volatility states, respectively. 
Finally, the natural gas market exhibited negative net spillovers in the 
high-volatility state. 

As shown in Fig. 16, in contrast to some previous research findings, 
concerning pairwise relationships, renewable energy is weakly associ-
ated with the green bond (Lucey and Ren [82], Lucey et al. [55]). We 
reveal that the natural gas market has an important role in risk spilling 

Table 3 
The high-frequency components of global ESG investment under MS-VAR-FIAPARCH parameter estimation.  

Mean process low volatility state high volatility state  

US ESG Advanced ESG Emerging ESG US ESG Advanced ESG Emerging ESG 

US ESG (− 1) 
− 0.63*** 
(0.00) 

-0.49*** 
(0.00) 

-0.62*** 
(0.00) 

0.69 
(0.17) 

1.41*** 
(0.01) 

1.63*** 
(0.01) 

US ESG (− 2) − 0.21 
(0.23) 

− 0.14 
(0.37) 

0.01 
(0.96) 

− 0.35 
(0.41) 

− 0.02 
(0.95) 

− 0.01 
(0.98) 

Advanced ESG (− 1) 
0.05 
(0.81) 

-0.40** 
(0.05) 

− 0.05 
(0.86) 

0.16 
(0.75) 

0.10 
(0.84) 

− 0.11 
(0.87) 

Advanced ESG (− 2) 
− 0.10 
(0.61) 

− 0.18 
(0.33) 

− 0.18 
(0.46) 

0.74 
(0.19) 

0.86 
(0.18) 

1.06*** 
(0.00) 

Emerging ESG (− 1) 
0.01 
(0.96) 

0.45*** 
(0.00) 

0.27* 
(0.06) 

− 0.03 
(1.00) 

− 0.26 
(0.20) 

0.03 
(1.00) 

Emerging ESG (− 2) − 0.11 
(0.40) 

− 0.02 
(0.85) 

− 0.04 
(0.80) 

0.03 
(0.92) 

− 0.47 
(1.00) 

− 0.76 
(1.00) 

Variance process 

Constant 
18.17 
(0.18) 

0.82 
(0.12) 

100.00 
(1.20) 

2.89 
(0.04) 

0.006 
(0.38) 

0.007 
(0.60) 

d-Figarch 
0.96*** 
(3.08) 

0.02 
(0.36) 

0.10 
(0.71) 

0.21 
(0.27) 

0.48 
(1.43) 

0.52*** 
(3.71) 

ARCH 0.10 
(0.15) 

0.40* 
(1.82) 

0.20 
(0.78) 

0.10 
(0.04) 

0.10 
(0.12) 

0.10 
(0.66) 

GARCH 0.52** 
(2.15) 

0.20 
(0.70) 

0.12 
(0.47) 

0.22 
(0.18) 

0.43 
(1.37) 

0.52*** 
(5.29) 

APARCH (γ) 
− 0.20 
(− 0.56) 

0.62* 
(1.70) 

0.89* 
(1.81) 

0.90 
(0.99) 

0.90** 
(2.05) 

0.90* 
(1.83) 

APARCH (δ) 
2.92 
(1.43) 

2.86 
(1.23) 

1.54*** 
(7.29) 

2.34 
(0.45) 

1.70** 
(1.99) 

1.71*** 
(3.72) 

Notes: The values in parentheses for the mean and variance processes represent p-values and t-values, respectively. *, ** and *** represent the significance at the 10%, 
5% and 1% level. 

Table 4 
The low-frequency components of policy uncertainty under MS-VAR-FIAPARCH parameter estimation.   

low volatility state high volatility state 

Mean process China EPU US EPU US MPU US CPU China EPU US EPU US MPU US CPU 

China EPU (− 1) 1.75*** 
(0.00) 

0.35 
(0.67) 

1.44*** 
(0.00) 

− 0.29*** 
(0.00) 

− 5.03 
(1.00) 

− 0.13 
(1.00) 

− 1.23 
(1.00) 

0.52 
(1.00) 

China EPU (− 2) -0.70*** 
(0.00) 

− 0.11 
(0.89) 

− 1.70*** 
(0.00) 

0.36*** 
(0.00) 

0.75 
(1.00) 

0.07 
(1.00) 

2.51 
(1.00) 

− 1.56 
(1.00) 

US EPU (− 1) 
0.01 
(0.21) 

1.96*** 
(0.00) 

− 0.01 
(0.84) 

0.01 
(0.21) 

− 0.02 
(1.00) 

− 2.09 
(1.00) 

0.09 
(1.00) 

− 0.02 
(1.00) 

US EPU (− 2) 
− 0.01 
(0.35) 

− 0.82*** 
(0.00) 

0.03 
(0.47) 

− 0.01 
(0.36) 

0.01 
(1.00) 

0.82 
(0.87) 

− 0.04 
(0.93) 

0.02 
(1.00) 

US MPU (− 1) − 0.00 
(0.87) 

− 0.15 
(0.46) 

1.82*** 
(0.00) 

0.01 
(0.53) 

0.00 
(1.00) 

0.22 
(1.00) 

− 6.05 
(1.00) 

− 0.01 
(0.95) 

US MPU (− 2) − 0.01 
(0.43) 

0.20 
(0.31) 

− 0.81*** 
(0.00) 

− 0.02* 
(0.08) 

− 0.03 
(1.00) 

0.06 
(1.00) 

1.59 
(1.00) 

0.03 
(1.00) 

US CPU (− 1) 
-0.73*** 
(0.00) 

− 0.94 
(0.52) 

2.46*** 
(0.00) 

1.32*** 
(0.00) 

1.54 
(0.91) 

1.39 
(1.00) 

2.01 
(0.91) 

4.86 
(1.00) 

US CPU (− 2) 
0.58*** 
(0.00) 

1.19 
(0.45) 

− 1.87*** 
(0.00) 

− 0.52*** 
(0.00) 

− 0.69 
(1.00) 

− 0.30 
(1.00) 

0.95 
(1.00) 

0.71 
(1.00) 

Variance process 

Constant 0.00 
(0.00) 

0.003 
(0.13) 

0.00 
(0.00) 

0.00 
(0.00) 

0.01* 
(1.88) 

0.001 
(0.43) 

5.80 
(1.34) 

0.008 
(0.41) 

d-Figarch 
0.92*** 
(27.60) 

0.74*** 
(3.58) 

0.91*** 
(39.09) 

0.95*** 
(28.61) 

0.95*** 
(65.15) 

0.71*** 
(7.84) 

0.99*** 
(86.58) 

0.98*** 
(41.90) 

ARCH 
0.36*** 
(4.15) 

0.39*** 
(6.52) 

0.32*** 
(4.23) 

0.40*** 
(3.93) 

0.30*** 
(3.02) 

0.25 
(1.42) 

0.20 
(1.08) 

0.30 
(1.16) 

GARCH 0.13 
(1.45) 

0.10 
(0.60) 

0.10 
(0.94) 

0.27*** 
(4.68) 

0.10 
(0.81) 

0.10 
(0.47) 

0.10 
(0.56) 

0.10 
(0.40) 

APARCH (γ) 0.02 
(0.71) 

0.10** 
(2.20) 

− 0.03 
(− 0.95) 

− 0.04 
(− 1.14) 

0.01 
(0.51) 

− 0.03 
(− 0.30) 

0.008 
(0.30) 

0.02 
(0.31) 

APARCH (δ) 
2.58*** 
(33.49) 

3.00** 
(2.05) 

2.58*** 
(50.45) 

3.00*** 
(25.22) 

3.00*** 
(10.30) 

2.20*** 
(4.32) 

3.00*** 
(8.01) 

3.00*** 
(6.15) 

Notes: The values in parentheses for the mean and variance processes represent p-values and t-values, respectively. *, ** and *** represent the significance at the 10%, 
5% and 1% level. 
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when the economy runs smoothly (Uddin et al., [54]). It enhances the 
risk spillovers of global policy uncertainty while also promoting risk 
overflow in ESG investment (US and emerging economies) and the crude 
oil market. Converging with some literature, we find that EPU can serve 
as a predictor across various distributions of cross-market correlations, 
particularly under normal market conditions [32,33]. We find that risk 
arising from China’s EPU can influence US CPU, which indirectly 
transmits to emerging EGS investment and the crude oil market. More-
over, the risk from advanced ESG investment can directly spillover to 

emerging and US ESG venture capital investment. While a short-term dip 
would occur in global economic growth, the natural gas market remains 
the origin of risk spillovers, but the risk can only be transmitted to the 
ESG investment of emerging and advanced economies. At the same time, 
the crude oil market has a key influence in transferring the risk and can 
also transmit risk to global ESG investment. Furthermore, the risk from 
CPU can rise steadily and may produce an effect on US MPU and 
advanced ESG investment. Contradicting previous literature, Urom and 
Ndubuisi [83] indicated that the US and European green indices are net 
transmitters of shocks in normal times. 

As shown in Fig. 17, with economic decline, EPU has an important 
position in risk spillovers. As found in previous research, a significant 
influence of economic and MPU occurs on green finance indices 
compared with CPU (Cepni et al., [51], Banerjee et al., [84], [46–48]), 
Wang et al., [85]). For instance, the US EPU conveys risk to China’s EPU 
most strongly, and then the corresponding risk transfers to advanced 
ESG investment. Moreover, EPU risk in the US affects MPU risk, which 
affects advanced ESG investment and the US CPU. Furthermore, US EPU 
risk can be vulnerable in emerging ESG investment and impact US CPU. 
During the economic downturn, policy uncertainty continuously serves 
as the source of risk transmission. For instance, the US EPU exacerbated 
the risk in the natural gas market. China’s EPU enhanced the US CPU 
and aggravated the risk in advanced ESG investment, while the risk from 
emerging ESG investment can directly influence advanced ESG invest-
ment. Furthermore, considerable risk from the crude oil market will 
have a tremendous impact on US ESG investment, which then intensifies 
US MPU and eventually produces a huge risk for advanced ESG invest-
ment. In contrast to some literature, CPU contributes more to total 
spillovers and the net total directional spillovers of other green finance 
markets (Lorente et al., [52], Wu et al., [86]). 

5.3. Time-frequency risk spillover from an asymmetrical perspective 

In the contemporary era, economic uncertainty, particularly policy 
uncertainty and financial market turmoil, is greater than it has been in 
many years. As a result, significant asymmetrical risk spillovers between 
EPU, MPU, and CPU; fossil fuel energy markets (crude oil and natural 

Table 5 
The low-frequency components of fossil energy under MS-VAR-FIAPARCH 
parameter estimation.  

Mean process low volatility state high volatility state  

Crude Oil Natural Gas Crude Oil Natural Gas 

Crude Oil (− 1) 
1.86*** 
(0.00) 

− 0.02 
(0.41) 

− 1.78 
(0.89) 

0.06 
(0.74) 

Crude Oil (− 2) 
− 1.00*** 

(0.00) 
0.02 

(0.35) 
− 1.20 
(1.00) 

− 0.08 
(1.00) 

Natural Gas (− 1) 0.00 
(0.20) 

1.91*** 
(0.00) 

− 0.00 
(0.93) 

− 1.46 
(1.00) 

Natural Gas (− 2) − 0.00 
(0.62) 

− 0.99*** 
(0.00) 

− 0.01 
(0.97) 

− 0.28 
(1.00) 

Variance process 

Constant 
0.71 

(0.21) 
0.005*** 
(16.62) 

0.0007 
(0.56) 

0.002 
(1.15) 

d-Figarch 0.89*** 
(12.31) 

0.22* 
(1.92) 

0.67*** 
(4.42) 

0.92*** 
(73.53) 

ARCH 0.28*** 
(3.81) 

0.86*** 
(18.02) 

0.46*** 
(15.80) 

0.30*** 
(6.14) 

GARCH 
0.10 

(0.54) 
0.10 

(0.59) 
0.10 

(0.66) 
0.10** 
(2.01) 

APARCH (γ) 
0.03 

(0.45) 
− 0.05 

(− 1.24) 
− 0.03 

(− 0.58) 
0.01 

(0.32) 

APARCH (δ) 2.54*** 
(3.59) 

2.19*** 
(52.08) 

3.00*** 
(3.36) 

3.00*** 
(12.11) 

Notes: The values in parentheses for the mean and variance processes represent 
p-values and t-values, respectively. *, ** and *** represent the significance at the 
10%, 5% and 1% level. 

Table 6 
The low-frequency components of global ESG under MS-VAR-FIAPARCH parameter estimation.  

Mean process low volatility state high volatility state  

US ESG Advanced ESG Emerging ESG US ESG Advanced ESG Emerging ESG 

US ESG (− 1) 
1.82*** 
(0.00) 

0.03 
(0.94) 

− 0.57*** 
(0.00) 

− 3.69 
(1.00) 

− 0.18 
(1.00) 

0.43 
(0.95) 

US ESG (− 2) 
− 0.88*** 
(0.00) 

− 0.06 
(0.89) 

0.56*** 
(0.00) 

1.74 
(1.00) 

0.09 
(1.00) 

− 0.90 
(0.96) 

Advanced ESG (− 1) 0.17 
(1.00) 

1.72*** 
(0.01) 

0.75 
(1.00) 

− 0.10 
(0.96) 

− 2.87 
(1.00) 

− 1.24 
(0.88) 

Advanced ESG (− 2) − 0.18 
(1.00) 

− 0.73 
(0.29) 

− 0.75 
(1.00) 

0.14 
(0.93) 

1.65 
(0.96) 

− 0.02 
(0.92) 

Emerging ESG (− 1) 
− 0.09 
(1.00) 

0.14 
(0.78) 

1.61*** 
(0.00) 

0.02 
(1.00) 

− 0.22 
(1.00) 

1.48 
(0.65) 

Emerging ESG (− 2) 
0.11 
(1.00) 

− 0.13 
(0.81) 

− 0.64*** 
(0.00) 

0.02 
(1.00) 

0.03 
(0.96) 

0.85 
(0.96) 

Variance process 

Constant 0.00 
(0.00) 

0.06*** 
(4.50) 

0.00 
(0.00) 

0.20 
(0.31) 

0.07 
(0.11) 

0.47 
(0.31) 

d-Figarch 
0.50 
(0.47) 

0.92*** 
(4.643e+004) 

0.86*** 
(9.63) 

0.60*** 
(3.11) 

0.73 
(5.19) 

0.95*** 
(26.59) 

ARCH 
0.62*** 
(2.97) 

0.45*** 
(52.16) 

0.42*** 
(10.55) 

0.64*** 
(7.91) 

0.55*** 
(11.49) 

0.30*** 
(2.76) 

GARCH 0.10 
(0.06) 

0.10 
(1.40) 

0.10 
(0.95) 

0.10 
(0.32) 

0.05 
(0.43) 

0.10 
(0.73) 

APARCH (γ) 0.06* 
(1.71) 

− 0.11*** 
(− 3.26) 

0.02 
(0.51) 

− 0.08*** 
(− 3.07) 

− 0.02 
(− 0.17) 

− 0.04 
(− 1.31) 

APARCH (δ) 
2.26*** 
(3.67) 

2.54*** 
(59.98) 

3.00*** 
(5.22) 

3.00*** 
(4.54) 

3.00 
(1.39) 

3.00*** 
(7.56) 

Notes: The values in parentheses for the mean and variance processes represent p-values and t-values, respectively. *, ** and *** represent the significance at the 10%, 
5% and 1% level. 
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gas); and global ESG investment have been demonstrated over recent 
years. 

As shown in Fig. 18, the high-frequency asymmetrical risk spillovers 
from other variables are all in decline. Specifically, the trend of asym-
metrical (positive and negative) risk first increased in 2016 and then 
decreased in the following years; however, the positive risk of US EPU 
increased between 2022 and 2023. More notably, the negative risk of 
policy uncertainty is relatively larger, particularly risks associated with 
US EPU. Similar findings are also revealed for global ESG investment, 
and positive risk is relatively high for the traditional energy markets, 
particularly that of the natural gas market. 

This phenomenon indicates that critical social disruptions that occur 
frequently such as regional turbulence, regime change, natural calam-
ities, trade disputes, and the pandemic introduce destabilizing factors to 
the global economy and financial markets. These irregular events can 
aggravate short-term economic turmoil. However, with the rapid 
development of economic globalization and regional economic inte-
gration, the global economy is also entering new phases of compre-
hensive cooperation. Governments worldwide have achieved an 

unprecedented level of tangible, global economic cooperation, while 
also acting in unison to address the threat posed by climate change. In 
this regard, the risk caused by the numerous irregular events can be 
effectively controlled in the short and long run. 

As shown in Fig. 19, low-frequency asymmetrical risk spillover has 
heterogeneous characteristics, wherein the negative risk of policy un-
certainty is relatively higher, particularly for China’s EPU. The irregular 
inverted U-shaped asymmetrical risks all reveal differing policy un-
certainties; however, the positive risk is relatively large in fossil fuel 
energy markets. Furthermore, the asymmetrical risks of crude oil market 
fluctuations rose around 2020. Notably, the asymmetrical risks of nat-
ural gas gradually decreased to a low point in 2020, and a rapidly rising 
risk trend emerged between 2022 and 2023. Moreover, the positive risk 
of the US ESG investment gradually decreased between 2015 and 2022 
and rose in 2023. The negative risk of US ESG investment was relatively 
stable between 2015 and 2021 and rose sharply between 2022 and 
2023. In addition, the asymmetrical risks of advanced ESG investment 
decreased steadily between 2015 and 2023, and the positive risk of 
emerging ESG investment remained high between 2015 and 2023, and a 

Fig. 10. Policy uncertainty, fossil energy, and ESG investment’s high-frequency risk spillovers from other variables with a two-state Markov chain.  

Fig. 11. Policy uncertainty, fossil energy, and ESG investment’s low-frequency risk spillovers from other variables with a two-state Markov chain.  
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negative risk of emerging ESG investment was found in 2017 and 2023. 
These findings indicate that the global economy has continued to 

decline since 2015, with a considerable impact on the global macro-
economy and financial markets. In this regard, led by the US, developed 
economies independently launched expansionary quantitative easing 
monetary policies to address economic stagnation, inflation, and 
employment difficulties and prevent the continued proliferation of cri-
ses. However, such policies may affect the direction and scale of the 
market economy and financial flow around the world, causing cyclical 
fluctuations in currency markets and asset prices, and inducing systemic 
financial risks. The COVID-19 pandemic that swept across the world in 
2020 increased the probability of an economic crisis. The US Federal 
Reserve’s subsequent continued aggressive interest rate hike policy ex-
poses the global economy to the risk of stagflation and exposes emerging 
economies to the risk of currency depreciation, inflation, economic 
recession, and sovereign debt crisis. Therefore, systemic risk in global 
energy markets will become more prominent, increasing policy uncer-
tainty in response to extreme climate change and policies for energy 

transformation. 
As seen in Fig. 20, the high-frequency asymmetrical risk spillovers to 

the other variables consistently present irregular inverted U-shaped 
forms. The asymmetrical risks from China’s EPU economic policy to 
other variables began to decline after 2017, while negative risk spillover 
was relatively higher. Furthermore, a low-stake positive risk from the US 
EPU to other variables has occurred since 2017; therefore, the primary 
risk is concentrated in negative spillovers. The asymmetrical risks from 
the US MPU to other variables have remained at a high level since 2017, 
and similar results also appeared in the asymmetrical US CPU spillovers. 
Moreover, positive high-risk from the crude oil market to other variables 
ranged from 2016 to 2019, while negative high-risk ranged from 2016 to 
2022, and the positive risk from the natural gas market to other vari-
ables behaved even more remarkably. Nevertheless, asymmetrical risks 
from US ESG investment to other variables declined to a low position 
after 2020, while the positive risk from advanced ESG investment to 
other variables has been high since 2016. Finally, the most prominent 
negative spillover was that of risk in emerging ESG investment to other 

Fig. 12. Policy uncertainty, fossil energy, and ESG investment’s high-frequency risk spillovers to other variables with a two-state Markov chain.  

Fig. 13. Policy uncertainty, fossil energy, and ESG investment’s low-frequency risk spillovers to other variables with a two-state Markov chain.  
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variables. 
The findings indicate that quantitative easing policies in the US and 

other developed economies since 2015 have considerably increased 

global inflation and asset prices expanded rapidly. The interest rate hike 
implemented by the US Federal Reserve to curb the negative impact of 
inflation once again tightened the global financial environment, causing 

Fig. 14. Policy uncertainty, fossil energy, and ESG investment’s high-frequency net risk spillovers with a two-state Markov chain.  

Fig. 15. Policy uncertainty, fossil energy, and ESG investment’s low-frequency net risk spillovers with a two-state Markov chain.  

Fig. 16. Policy uncertainty, fossil energy, and ESG investment’s high-frequency dynamic connectedness with a two-state Markov chain.  
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Fig. 17. Policy uncertainty, fossil energy, and ESG investment’s low-frequency dynamic connectedness with a two-state Markov chain.  

Fig. 18. Policy uncertainty, fossil energy, and ESG investment’s high-frequency asymmetric risk spillovers from other variables.  

Fig. 19. Policy uncertainty, fossil energy, and ESG investment’s low-frequency asymmetric risk spillovers from other variables.  

L. Lin et al.                                                                                                                                                                                                                                       



Applied Energy 368 (2024) 123432

21

short-term capital flow back to developed economies with high interest 
rates. However, emerging economies and high-debt countries are chal-
lenged by issues such as liquidity shortages, debt deterioration, and 
secondary social crises. In addition, global energy supply and demand 
are severely unbalanced, which may evolve into a short-term energy 
crisis. Hence, some countries with high debt and weak financial risk 
resistance may be the first to be exposed to financial risks from related 
economies, which may lead to regional or even global spillovers. 
However, with the US and Europe approaching the end of tightened 
monetary policy overall, volatility in developed economies has corre-
spondingly decreased, and risk spillovers to the global economy have 
weakened. In an environment of global economic recovery, global en-
ergy transformation, climate governance, and cooperation are expected 
to improve. 

As shown in Fig. 21, the low-frequency asymmetrical risk spillovers 
to other variables presented heterogeneous characteristics. The positive 
risk from China’s EPU to other variables became extremely weak after 
2020, while the negative risk first reduced between 2017 and 2021 and 
rose again between 2022 and 2023. Similarly, the risk from US EPU to 
other variables declined after 2020, but the positive risk remained sig-
nificant. By comparison, low asymmetrical risks from the US MPU to 
other variables occurred, and high asymmetrical risks from the US CPU 
to other variables were only significant between 2016 and 2017. 
Moreover, asymmetrical risk spillovers from the natural gas market to 
other variables were generally larger than those from the crude oil 
market. The risk from US ESG investment was mainly concentrated in 

positive spillovers. The asymmetrical risk spillovers from the advanced 
ESG investment to other variables declined rapidly after 2017, with 
those from emerging ESG investment to other variables rising quickly 
after 2022. 

The findings indicate that economic globalization has encountered a 
backlash since 2015, as trade protectionism and geopolitical games 
continued to intensify, curbing the momentum of world economic 
growth, and adding more uncertainty to the prospects of economic re-
covery worldwide. The COVID-19 pandemic prompted European and 
American countries to implement extraordinary stimulus policies to 
promote rapid economic resilience, which reduced the impact of the 
pandemic on enterprises and residents and the unemployment rate. 
However, the marginal effect of these stimulus policies is diminishing. 
For instance, massive quantitative easing policies resulted in excess 
liquidity, which generated price increases and structural labor shortages 
driving up wage levels, and forcing the US Federal Reserve to accelerate 
the pace of tightening monetary policy. If emerging economies do not 
respond adequately to the Federal Reserve’s tightening policies and 
potential economic turmoil, multiple impacts such as capital outflow 
and increased debt burdens could occur. This may trigger a repricing of 
global financial assets and further increase global financial system risks. 
In addition, the European Central Bank announced more measures to 
incorporate climate change factors into the euro monetary policy 
framework to reduce financial risk related to climate change and green 
economic transformation. In addition, the European Central Bank will 
introduce climate change factors in corporate bond purchases, collateral 

Fig. 20. Policy uncertainty, fossil energy, and ESG investment’s high-frequency asymmetric risk spillovers to other variables.  

Fig. 21. Policy uncertainty, fossil energy, and ESG investment’s low-frequency asymmetric risk spillovers to other variables.  
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frameworks, disclosure requirements, and risk management to reduce 
financial risks related to climate change on assets and liabilities, main-
tain price stability in the euro system, support green economic trans-
formation, and promote a positive trend in the global economy. 

As shown in Fig. 22, similar features are presented in the high- 
frequency components of asymmetrical net spillovers. The positive net 
spillover of natural gas and emerging ESG investment was extremely 
weak after 2020, while the asymmetrical net spillover of China’s EPU 
and US CPU was approximately the same. A similar conclusion is found 
for the asymmetrical net spillovers of US MPU and the natural gas 
market. Furthermore, a higher positive net spillover of crude oil and 
advanced ESG investment was sustained after 2020. The negative net 
spillover of US EPU and crude oil rose slowly between 2018 and 2022, 
with similar findings from US MPU between 2017 and 2020. However, a 
steadily increasing trend of negative net spillover from EGS investment 
(US and advanced economies) emerged after 2020. Moreover, the 
negative net spillover of the emerging ESG investment was very weak 
after 2016. 

As shown in Fig. 23, the low-frequency asymmetrical net spillovers 
demonstrate heterogeneous characteristics. More positive net spillovers 
of China’s EPU, natural gas, and advanced ESG investment were 
revealed between 2015 and 2019, while noticeable negative net spill-
overs emerged from US EPU and the crude oil market. However, the 
situation reversed between 2020 and 2022. Furthermore, emerging ESG 
investment experienced negative net spillovers between 2015 and 2022, 
and a positive net spillover occurred in the US MPU in 2015, becoming 
extremely weak after that. Finally, a negative net spillover of the US CPU 
occurred between 2015 and 2023. 

As shown in Fig. 24, unlike previous research findings that irregular 
risks in the global energy–stock system usually transform one another 
(Rehman et al., [87], Yang et al., [88]), the results reveal that patterns 
of asymmetrical dynamic connectedness from the high-frequency 
component are broadly similar. That is, the core positive risks all orig-
inate from US EPU. The crude oil market is the most affected variable, 
followed by US CPU, and ESG investment (US and advanced economies) 
are seriously affected, whereas China’s EPU and natural gas are less 
affected. Furthermore, the natural gas market became the central risk for 
negative spillovers to other variables. The negative spillover strength of 
policy uncertainty (China’s EPU and US CPU) and ESG investment (US 
and emerging ESG) were also relatively higher. 

As shown in Fig. 25, complicated risk spillovers occurred between 
policy uncertainty, fossil fuel energy, and ESG investment, with alter-
nating positive and negative trends throughout the low-frequency 
component, as shown in previous research (Pham et al., [89], Sarker 

et al., [90], [46–48]), Wu and Qin [91]). Low-frequency asymmetric 
dynamic connectedness exhibited different characteristics. The positive 
risk from China’s EPU had a direct impact on the US EPU, and the higher 
risk was transferred to the emerging ESG investment. In contrast, a 
positive risk from China’s EPU was demonstrated for the US MPU and 
the natural gas market. Therefore, these dual risks ultimately had a 
significant effect on US ESG investment. Furthermore, the accumulated 
positive risk transmitted from US ESG investment was directly passed to 
US EPU, with considerable impact. Furthermore, the negative risk from 
the US MPU imposed a massive amount of risk on ESG investment 
(emerging and advanced economies) and strengthened the risk of policy 
uncertainties (China’s EPU, US EPU, and US CPU). In addition, negative 
spillover from traditional energy markets (crude oil and natural gas) 
simultaneously transmitted risk to the US and China’s EPU. Moreover, 
negative spillover was transmitted directly from the US ESG investment 
to China’s EPU and US EPU and CPU. 

Fig. 26 displays the common factor of policy uncertainty, fossil fuel 
energy, and ESG investment’s time-frequency risk spillovers from other 
variables with high volatility state. Affected by common nonsystematic 
risks, the ESG stock market has a higher overall degree of policy un-
certainty and contagion of fossil energy risks during the sample period. 
In addition, the uncertainty of economic policies between China and the 
United States has seen a significant increase in risk spillovers from the 
fossil fuel energy market and the ESG stock market in 2020. Affected by 
systemic risks, the ESG stock market received a high level of risk spill-
overs from policy uncertainty and fossil fuel energy markets before 
2018, and then it rapidly declined. After 2020, the uncertainty of US 
climate policy is most affected by external factors. 

Fig. 27 reveals common factors of policy uncertainty, fossil fuel en-
ergy, and ESG investment’s time-frequency risk spillovers to other var-
iables with high volatility state. Affected by common non-systematic 
risks, the crude oil market has the greatest risk spillover to policy un-
certainty and the ESG stock market. Followed by the global ESG stock 
market. Affected by systemic risks, The crude oil market and policy 
uncertainty jointly generate significant risk spillovers on the global ESG 
stock market. 

Fig. 28 reveals the common factors of policy uncertainty, fossil fuel 
energy, and ESG investment’s time-frequency net risk spillovers with 
high volatility state. Under the high-frequency component, the crude oil 
market and emerging ESG stock markets are both the emitters of risk. 
However, the crude oil market and the economic policy uncertainty are 
both the sender of risks under the low-frequency component. 

with high volatility state. 
Fig. 29 demonstrates the policy uncertainty, fossil fuel energy, and 

Fig. 22. Policy uncertainty, fossil energy, and ESG investment’s high frequency asymmetric net risk spillovers.  
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ESG investment’s time-frequency common factor under high volatility 
state. Contrary to Umar et al., [92] findings, when considering common 
factors, the US economic policy uncertainty can directly transmit non- 
systemic risk and systemic risk to the advanced economy ESG in-
vestments. In addition, risks originating from the crude oil market can 
also be directly transmitted to global ESG investments (Hanif et al., 
[93], Malik and Umar [94], Yousaf et al., [95]). 

6. Policy implication 

To address the risk spillovers in macroeconomic regulation of the 
global economy, governments worldwide should actively enhance risk 
warning measures, publicize effective policy information, and 
strengthen the information of communication with the market to 
enhance the openness and predictability of policy formulation. It is also 
essential to coordinate the tools for regulating macroeconomic policies, 
establish clear control and response systems, and avoid the risk of 

Fig. 23. Policy uncertainty, fossil energy, and ESG investment’s low frequency asymmetric net risk spillovers.  

Fig. 24. Policy uncertainty, fossil energy, and ESG investment’s high frequency asymmetric dynamic connectedness.  

Fig. 25. Policy uncertainty, fossil energy, and ESG investment’s low frequency asymmetric dynamic connectedness.  
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uncertainty between different policy measures. In addition, based on the 
characteristics of government debt and changes in fiscal pressure under 
multidimensional uncertainty shocks, governments should fully 
leverage the complementarity and coordination mechanisms among 
policy tools, provide time windows or buffer mechanisms for different 
policy implementation, and ensure continuity, stability, and sustain-
ability of macroeconomic policies after uncertainty shocks occur. 

Multiple measures should be taken simultaneously to prevent risks in 
the world’s energy supply system and promote the efficient use of global 
energy reserves. Such measures could include increased exploration and 
development efforts of oil and gas industries in various countries around 
the world, promoting increased oil and gas reserves and production, and 
accelerating oil and gas production, supply, storage, and sales systems 
development. Finally, nations should establish large-scale underground 
gas storage groups across regions to enhance and maintain oil and gas 
self-sufficiency. 

To better prevent and navigate the emerging risks and uncertainties 
related to sustainable green finance, the international community must 
transform financing mechanisms into green models and further stan-
dardize the issuance and approval processes of green financing tools. 
Continuous supervision of green credit and green bonds throughout the 
entire cycle should be established and strengthened, and default 

standards must also be set for sustainable linked financing products. 
Financial institutions conducting credit business should also consider 
incorporating ESG indicators into green credit ratings and default risk 
warnings. 

7. Conclusion 

Since economic growth is full of uncertainty and risk and subject to 
multiple crises, the spillover effects of policy uncertainty, fossil fuel 
energy markets, and global ESG investment exhibit heterogeneous 
characteristics. Therefore, time-frequency components can be distin-
guished by introducing TVF-EMD and the PCC. Based on this, we com-
bined the MS-VAR embedded with the FIAPARCH with the asymmetric 
TVP-VAR variance decomposition, constructing a high-dimensional 
network based on a VAR-CF model to accurately determine asym-
metric time-frequency spillover effects. The main conclusions are 
fourfold. 

First, when the economy runs smoothly, changes in crude oil and 
natural gas prices can still impose risks to global ESG investment. Sec-
ond, during economic downturns, risks from US EPU can directly or 
indirectly intensify global ESG investment. With the global economic 
recession, risks from China’s EPU and crude oil market can indirectly 

Fig. 26. Common factor of policy uncertainty, fossil energy, and ESG investment’s time-frequency risk spillovers from other variables with high volatility state.  

Fig. 27. Common factor of policy uncertainty, fossil energy, and ESG investment’s time-frequency risk spillovers to other variables with high volatility state.  
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cause large fluctuations in advanced economies’ ESG investment. Third, 
when facing irregular events, US EPU can impose positive risks, and the 
strongest source of the negative spillover is the natural gas market. 
Thirdly, confronted with extreme events, positive risks from China’s 
EPU can be indirectly delivered to emerging economies’ ESG invest-
ment. Moreover, the US MPU can exert a negative spillover to global 
ESG investment. Finally, when facing common higher risks, the crude oil 
market can be considered the main source of spillover to global ESG 
investment. 

Based on our findings, we propose prospects for navigating future 
policy uncertainty and risk spillovers between fossil fuel energy and ESG 
stock markets. First, the selection of international financial markets to 
be tested should be expanded. Second, the improved wavelet model can 
be combined with other nonlinear neural network models to accurately 
simulate the risk spillover of complex data features in the international 
financial market. Finally, the long-term asymmetric multivariate 
GARCH family model combined with the MS-VAR quantile autore-
gressive model or copula model can be further applied using extreme 
point theory to investigate the multiple channels and underlying causes 
of risk spillovers in international financial markets. 
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